

DETERMINE THE ROLE ON MANUFACTURING COMPANIE'S MARKETING PERFORMANCE IN THE STATE OF UTTRAKHAND

Harmeet Singh, Research Scholar, School Of Business and Commerce , Glocal University, Mirzapur Pole , Saharanpur ,Uttar Pradesh, India.

Dr.Vipin Kumar, Research Supervisor, School Of Business and Commerce,

Glocal University, Mirzapur Ploe, Saharanpur, Uttar Pradesh, India.

ABSTRACT

The environment and energy play a major part in a country's development. As energy generation has increased, so too have carbon emissions, but the Third World countries have found it incredibly difficult to keep up technologically and capital-intensively. Even in India, where there has been extensive electrification, the increase in energy consumption has greatly outpaced the expansion of installed capacity. An important factor is the rise in energy-intensive economic activity. It gets harder for the industrial sector every day to comply with international standards, especially when it comes to lowering environmental hazard requirements from clients abroad and maintaining competitive production costs. The industrial sector's production costs are rising daily due to rising energy costs, which is a major problem in today's corporate world. The manufacturing sector in international business now faces significant challenges due to the environment's growing effects. It is now very difficult for the manufacturing sector to comply with regulations and compete worldwide due to rising carbon emission levels. My goal is to use this study as a model for Uttrakhand's manufacturing enterprises, helping them to overcome issues related to energy and environmental practices, aspects, and company performance growth while lowering carbon emissions for sustainable development.

Keywords: Energy Management Practices, Environmental Management Practices, Market performance.

INTRODUCTION

Growing globalization has forced organizations to prioritize sustainability while making marketing decisions in the recent past. As a result, businesses are increasingly aligning their operations and focusing on environment and economy focused marketing strategies (Richey et al., 2014). Companies that prioritize sustainability in their business models are currently looking for strategies that align with their social and environmental commitments and help them accomplish sustainable goals (Comin et al., 2019). Despite realizing the importance of sustainability for their modest situations in several aspects, businesses are uncertain about how to implement their energy and environmental management practices (Montabon et al., 2007). Crucially, businesses are becoming more environmentally proactive as a result of the increasing

deterioration of environmental health linked to greenhouse gas emissions and pollutants produced by manufacturing. As previously indicated, companies are very concerned with the specifics of implementing energy and environmental management practices, and top management's involvement is essential to the outcome. The main factors influencing environment management performance are energy management techniques. Top management may successfully translate result-oriented adoption of environmental management principles if they actively participate in understanding the business's social posture while taking into account their environmental impact (Huse, 2005).

The social expectations for energy security and sustainability are increasing the importance of environmental management practices for economic gain (Kleindorfer et al., 2005; Porter and van der Linde, 1995; Pagell and Gobeli, 2009; Sroufe, 2003; Yang et al., 2010). The relationship between environmental management and financial performance has been the subject of extensive discussion, although the results are erratic and ambiguous (Jimenez and Lorente, 2001; Russo and Fouts, 1997; Rao and Holt, 2005). This alternative viewpoint holds that businesses who recognize the value of environmental and energy sustainability for their capacity to compete are unsure about how to apply environmental and energy management strategies (Montabon et al., 2007). Many organizations are currently facing resource constraints on a worldwide scale. At the same time, countries like India are facing difficulties in achieving higher levels of economic growth as well as concerns related to rising energy consumption. Energy efficiency has a lot of promise. Energy efficiency provides significant support for the low-carbon transformation in the Indian setting. Energy efficiency improvement has been identified as the most important factor contributing to India's economic growth. As a result, it has been agreed that cutting down on waste and unnecessary energy use in a number of industries is necessary to develop and execute new, creative policies. Covid has shown us that industry 4.0, or process and production automation, will alter the face of the energy business in the future. India will be resource-efficient, autonomous, and secure through the adoption of new technology, the creation of numerous energy programs, and education and awareness campaigns about the advantages of energy conservation among the general public. Energy efficiency improvement has been identified as the most important factor contributing to India's economic growth. As a result, it has been agreed that cutting down on waste and unnecessary energy use in a number of industries is necessary to develop and execute new, creative policies. Covid has shown us that industry 4.0, or process and production automation, will alter the face of the energy business in the future. India will be resource-efficient, autonomous, and secure through the adoption of new technology, the creation of numerous energy programs, and education and awareness campaigns about the advantages of energy conservation among the general public.

RESEARCH METHODOLOGY

Hypotheses of the study

H0: There is no significant influence of top management commitment on company's marketing performance.

H8: There is a significant influence of top management commitment on company's marketing performance.

Research design

The design of a research study defines the plan and structure of it to gain answers to the research questions. Hence, if we take a broader out-look, the present study can be defined as "Descriptive, Non- experimental and Quantitative" in nature. The descriptive analysis is presented through sample profiling, reliability analysis of measurement scale of variables and item analysis of each variable.

Sampling methodology:

Target population

The data for the study were collected from manufacturing companies within Uttrakhand state, India, as they are responsible for a significant portion of the environmental degradation .The study focused on Large, medium- and small-sized manufacturing companies from Uttrakhand, India. In terms of industrial production, Uttrakhand is responsible for 18% of India's output. Therefore, Uttrakhand was selected for the study.

Size of companies:

Micro, Small, Medium and Large.

Sample size

Statistically, the minimum sample size required was 385. The formula that determines the size of the sample is as follows

n = p (1-p)
$$(\vec{z})^2$$

n = 0.50 (1-0.50) $(\frac{1.96}{2})^2$
0.05

n = 385

The sample size for the study is 594. The sample data was collected based on type of the company, size of the company and designation of the respondent. Table 3-1 presents the details of the sample according to the type of the company, size of the company and designation of the respondent.

Company type Designation Type (1) (2)

Sample Company Profile

Company type	Designation (1)	Туре (2)	Sample (3)	Total (1)x(2)x(3)	Designation Of	Туре	No.
						Chemical	6
						Dyes	6
						Furness	6
Micro	1	6	6	36+6=42	CEO	Engineering	6
						Motor	6
						Valve	6
					1		36
					CEO /	Chemical	6
					owner		

					Marketing Manager Production Manager	Engineering Insecticides / reactive	6
Small	6	6	6	216	Finance Manager	Dyes	6
					Stores / Purchase Manager	Steel / rolling mill	6
					Engineeri	Textiles	6
					ng Manager		26
					CEO	Chamical	36 6
					CEO	Chemical	0
					HOD - Engineeri	Engineeringg	4
					ng		
					HOD - Purchase	Pharma	4
					HOD - Store / Dispatch	Dairy	2
					HOD - Marketing	Sugar	2
Medium					HOD - Environm ent	Paper & pulp	2
Medium	12	6	4	240	HOD - Finance		
					HOD - Productionn		

	r.	Fotal		59	4		104
		<u> </u>	<u> </u>	1			12
					Finance		
					HOD -		
					HSE -		
					Store HOD -		
					HOD -		
					Purchase		
					HOD –		
Large	8	4	3	96	ng		
T	0				Engineeri	Oil & gas	3
					HOD -	Chemical	
					Marketing		3
					n HOD -		
					Productio	engineering	3
				President -	Heavy	2	
					Manager		-
					Factory	Fertilizer	3
			<u> </u>				20
					Utility		
					R & D Manager -		
					Manager -		
					Production		
					Manager -		
					Maintenance		
					Manager -		

Sample Composition

Variables	Particulars	Frequency	Percentage
		N=594	
Type of the company	Chemical	222	37.4
	Dairy	24	4.0
	Engineering	168	28.3
	Fertilizer	24	4.0
	Oil & Gas	24	4.0
	Pharmaceutical	48	8.1
	Pulp & paper	24	4.0
	Sugar industry	24	4.0
	Textiles	36	6.1
	0 to 30	42	7.1
	31 to 100	216	36.4
	101 to 200	123	20.7
	201 and above	213	35.9
	Public Ltd.	287	48.3
	Private Ltd.	188	31.6
	Partnership company	2	.3
	Others	117	19.7
	Micro	51	8.6
	Small	212	35.7
	Medium	236	39.7

ISSN 2349-2819 Email- editor@ijarets.org

Large	95	16.0
Yes	588	99.0
No	6	1.0
Yes	463	77.9
No	131	22.1
0 to 50	99	16.7
51 to 150	159	26.8
151 to 500	237	39.9
501 and above	99	16.7
Lower	9	1.5
Same	165	27.8
Higher	414	69.7
Much Higher	6	1.0
0% or Negative	1	.2
1% to 5%	148	24.9
6% to 10%	344	57.9
11% to 15%	101	17.0
0% to 5%	4	.7
5% to 15%	193	32.5
15% to 25%	150	25.3
25% to 30%	247	41.6

RESULTS

Marketing Performance

Multiple linear regression analysis was performed for Marketing Performance, taking as dependent variable. IVs were fed using enter method. This Regression Model was found significant [F(9, 579)=15.425, p<0.05], indicating the model fit means data really fits with theory. The model explanatory power was estimated through R-square which is a measure of % of variance explained. The marketing performance was explained upto 19.3% by all the independent variables.

The regression analysis revealed that following factors were found to be significant: energy awareness (β =0.094, t=2.287, p<0.05); energy audit (β =-0.089, t=-2.164, p<0.05); EMP- Organizational & Planning (β =0.128, t=2.892, p<0.05); EMP- product related operational (β =0.258, t=5.071, p<0.05); and top management commitment (β =0.123, t=2.229, p<0.05). However, energy efficient equipment and technology, energy knowledge EMP- process related operational, and EMP- communicational practices were found to be non-significant predictor for environmental performance (p>0.05).

Model	Sum of squares	df	Mean square	F	Sig.
Regression	31.352	10	3.135	18.543	.000 ^b
Residual	98.573	583	.169		
Total	129.925	593			
1	ariable: Marketing per Constant) Top Manag			ronment,	Energy Audi
Energy awarene	ess, Environment mana	agemen	t product, Energy	Efficient E	Equipment an
technology, En	ergy knowledge, Envi	ironmen	t management p	rocess, Top	nanagemer
•	nergy, Environment m	nanaden	pent communica	tion	

Model-fit statistics for Marketing Performance

Table 4-43: Model Summary- Marketing Performance

R	R square	Adjusted R square	Standard error of the estimate
.491 ^a	.241	.228	.41119

a. Predictors: (Constant), Top management commitment environment,, Energy Audit, Energy awareness, Environment management product, Energy Efficient Equipment and technology, Energy knowledge, Environment management process, Top management commitment energy, Environment management communication,

Environment management Planning

Further, there was no multi-collinearity in data as all the IVs have variance inflection factor (VIF) values less than ten.

Table 4.44 shows that *energy efficient equipment, energy knowledge, environmental process, environmental communication and top management commitment forenvironmental were non-significant* determinants *and all other dimensions* were significant determinants of Environmental Performance(p < 0.05, p < 0.1, t = 7.47; E = 0.221). The relationship was significant positive.

Model	UC(Un	standardized	SC(Standardized	t	Sig.	Collineari	ty	
	Coefficients)		Coefficients) Statistics					
	В	Std. error	Beta	_		Tolerance	VIF	
Constant	1.649	.221		7.470	.000*			
Energy	.079	.035	.090	2.255	.024*	.817	1.224	
awareness								
Energy Efficient	.043	.047	.041	.924	.356	.662	1.511	
Equipments and technology								
Energy	009	.027	014	318	.751	.696	1.436	
knowledge								
Energy Audit	061	.034	073	-	.075**	.769	1.300	
				1.784				
Environment management	.198	.037	.269	5.316	.000*	.506	1.975	
Planning								

Table 4-44: Coefficients- Marketing Performance

Environment	.102	.037	.117	2.760	.006**	.723	1.382
management							
Product							
Environment	029	.046	028	629	.530	.646	1.547
management							
process							
Environment	.010	.033	.015	.315	.753	.587	1.703
management							
communication							
Тор	.223	.053	.192	4.172	.000*	.614	1.630
management							
commitment for Energy							
for Energy							
Management							
Тор	.016	.043	.019	.361	.718	.493	2.030
management							
commitment							
for Fasility and set							
Environment							
Management							
*p <0.05	1		<u> </u>	I	1	1	
** p <0.1							
a. Dependent Va	ariable:	Marketing	g performance				

DISCUSSION

Adopting Energy Efficient Equipments and Technology in manufacturing companies reduces energy cost per unit of production, overall energy cost, improving productivity hence improving financial performance, reducing wastages and environmental impacts improves environmental performance and being leader in adopting efficient system and technology improves reputation of the company hence improving marketing performance.

CONCLUSION

Thus, the present study is a humble attempt to contribute in the field of manufacturing companies in general and impact of energy and environment management practices, top management commitment on manufacturing companies, marketing performance in particular. Impact of energy management practices as well as environmental management practices both along with top management commitment on business performance covering market performance, financial performance too along with environmental performance.

References

- Albuquerque, P., Bronnenberg, B. J., & Corbett, C. J. (2017). A spatiotemporal analysis of the global diffusion of ISO 9000 and ISO 14000 certification. *Management science*, 53(3), 451-468.
- Alcántara, J. M. (2023). Encouraging energy conservation in office environments through group feedback and individual comp arison feedback.
- Amiri, M. M., Noubbigh, H., Naoui, K., &Choura, N. (2015). Environmental management system: environmental impacts and productivity. *International Journal of Business and Management*, 10(11), 107.
- Bull, R., & Janda, K. B. (2018). Beyond feedback: introducing the _engagement gap'in organizational energy management. *Building Research & Information*, 46(3), 300-315.
- Buysse, K., &Verbeke, A. (2003). Proactive environmental strategies: A stakeholder management perspective. *Strategic management journal*, 24(5), 453-470.
- Darnall, N. M. (2002). Why Firms signal "green": Environmental management system certification in the United States. The University of North Carolina at Chapel Hill.
- Darnall, N., Jolley, G. J., &Handfield, R. (2018). Environmental management systems and green supply chain management: complements for sustainability?. *Business strategy and the environment*, *17*(1), 30-45.
- Dasgupta, S., & Roy, J. (2017). Analysing energy intensity trends and decoupling of growth from energy use in Indian manufacturing industries during 1973–1974 to 2021–2022. *Energy Efficiency*, *10*(4), 925-943.
- De Burgos Jimenez, J., &Lorente, J. J. C. (2001). Environmental performance as an operations objective. International Journal of Operations & Production Management.
- Enshassi, A., Ayash, A., & Mohamed, S. (2018). Factors driving contractors to implement energy management strategies in construction projects. *Journal of financial management of property and construction*.environmental and financial performance: Insights from Indian SMEs. *International Journal of Production Economics*, 212, 111-124.

- Famiyeh, S., Adaku, E., Amoako-Gyampah, K., Asante-Darko, D., &Amoatey, C. T. (2018). Environmental management practices, operational competitiveness and environmental performance: Empirical evidence from a developing country. *Journal of Manufacturing Technology Management*.
- Fernando, Y., &Hor, W. L. (2017). Impacts of energy management practices on energy efficiency and carbon emissions reduction: a survey of Malaysian manufacturing firms. *Resources, Conservation and Recycling*, 126, 62-73.
- Fernando, Y., Bee, P. S., Jabbour, C. J. C., &Thomé, A. M. T. (2018). Understanding the effects of energy management practices on renewable energy supply chains: Implications for energy policy in emerging economies. *Energy Policy*, 118, 418-428.
- Fresner, J. (1998). Cleaner production as a means for effective environmental management. *Journal of cleaner production*, 6(3-4), 171-179.
- Fuentes-Fuentes, M. M., Albacete-Sáez, C. A., &Lloréns-Montes, F. J. (2004). The impact of environmental characteristics on TQM principles and organizational performance. *Omega*, *32*(6), 425-442.
- Gangolells, M., Casals, M., Forcada, N., Macarulla, M., &Giretti, A. (2016). Energy performance assessment of an intelligent energy management system. *Renewable and sustainable energy reviews*, *55*, 662-667.